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CONVEX: A COMPUTER PROGRAM FOR SOLVING CONVEX PROGRAMS

by
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H. O. Hartley, R. R. Hocking, L. R. LaMotte, H. H. Oxspring

Introguction

The purpcse of this technical report is to describe a computer program imple-

menting the convex programming algorithm developed by Hariley and Hocking {1963}. ?

The progrem has been used successfully on a number of problems connected with ;

Project Themis as well as numerous other problems which heve arisen at Texas A&M.

The program (s also belng used by s number of other institutions s&s shown on the

sttached List of Users.

The report is in two parts. Part I is & description of the algorithnm as
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extracted from the initial paper snd Part II gives & documentation of the program.
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PART I: Description of the Algerithn

INTRODUCTION
The geoersl mathematical progremming problem can be described as

meximize g(x)

subject to fi(x) <90 i=1l...nm
The copvex programming problem is an important specisl case which is ameneble
to mathematical and numerical treatment and requires thst g(x) is concave
and the fi(x) ere convex, real-valued functions of the n-vector X for all
real X. The non-negative condition on the variables msy be included but
it introduces no loss of generality. It is also assumed that the functions ere
differentisble. Certain special problems exist in which these properties hold
only in & subset of the n-spece but they can frequently be handled by slight

modifications of the algorithm to be discussed in the following.

Formulation of the Convex Problem as 8 Linear Problem

The problem given sbove is equivalent to that of maximizing the co-ordinate
xn+l subject to the originel restrictions and the additionel restriction
xn+l - g{x) € 0. Note thet the concavity of g{(x) implies thet this new
restricticn is convex and oould just be adjoined to the criginal set es
rm+l(x) < 0. It does have particuler significance-however and so it will be
carried in its original form.

This new problem has a convex feasible region in (n+l) -~ space bounded
on the sides by cylindricsl sets formed from the boundsries fi(x)=0 and x=0
and bounded from above by the surface Xne1 = g(x). This fessible region is

now epproximsted by 8 new one which is defined by hyperplanes in (n+l) - space,
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that is, the convex feasible region defined by the veatrictions
£f,(x) €0 f«1 ... m+ 1 is replaced hy one whici: is defined by che

intersection of & large set of linear half-spaces. These hyperplanes are

constructed as follows:

(i) Impose an arbitrarily fine grid on n-space.

(1i) Construct a tangent plane to each surface X, 41" fi(x)

i=31 .,..2+ 1 at each grid point.

(iii) For i =1 ... m consider the intersection of tiis planc

with Xn o+ 3 £ 0 and use the resulting linear restriction. For

i = m+ 1 use the tangent plane itself as a linear boundary to the

feasible space.

A AR Py R

The generel equation of & tangent plane to the surtace

3

PRELE e 2R

X 41" f(x) at a grid point x* is ziven by

21 fonn,

LS I

n+1 2 x (xJ b xs) + £(x*)
x*

¢
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Trus for each of the restrictions fi(X) <0i=1...m we have

g set of linear restrictions of the form

LR Nr'!' Mpp oy

ORI S e

n a fi(x) J ( ) (o)
R — X - X + f. xI _<.0
Jsla xJ - 3 3 i

it

Similarly for the restriction X .- g{x) < 0 we get the

set of linear restrictions

x -z %—giil (x

-x%) - plx*) < 0O
=1 0% o
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At this point the additional assumption is made that the originel
feasible rezion be bounded. Thus there is som- wvalue D such that the
cube {xJI <D, J=1...n contains the feasible region. Thus if we only
allow prid points in this cube the linear problem formulated above has a
finite number of restrictions end the sirplex method could, at least
theoretically be applied. (in practice it has not been found necegsary to
specity D.)

The concavity of g{x) om a bounded spece sliows us to postulate &
value ¥ such that the optimum value of g{x) < M.

The linear problem formulated above can now be summarized as follows:

max d'x

X, > 0 i=1l...n

iy + 1 unrestrained

Here x' = (xl Xy oos Xy X Jand @' = {00 ... 01) aren+ 1

n+l

vectors and A and ¢ can be written in partitioned form as follows:

T oA @ [ o]
A ° €2

A= C = R
Am o] Cm
Am + 1 € : Cm +1
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For 1 7'1 vee B Ai is e matrix whose rows ere formed by evaluating the
at ar
vector i & g ton i at all grid points. Thus A, is N xn
XK xl | x, i

where N is the number of grid points. Cerresponding toc A, we have

i
the N -~ vector C1 vhose elements are given by

n 3af

i‘] »
L - xT - £, {x%)
J"l T-}‘J_; x¥ J i

evaluated at the grid points x".

Similarly, Am .1 is defined by the rows

an //

(-9_5_ oo
] xl

and ¢

n 4+ 1 is its corresponding vector with elements 3

(x0) - 1 2& @
g{x®) - 3 :J b S
I

The (p + 1) st column of A contains zeros in all rows except those

corresponding to Am ané the last row which contains ones. Note that

+ 1

this last row corresponds to the restriction x ., < M. !

The dual to the linear problem descrided above is given by
minimize c'w

8.t.

fmtifirtos s s *

A'lw > 4

w > 0

eiy A EDAN A 4

Here for convenience the restrictions have all been written as A'w > d but

IR

in fact since x, is unrestrained the last restriction is an equality.

+ 1
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Tnis restriction has coefficients which are the last column of A end hes
a one on the right hand side.

This dual problem is best summarized in tableau form as shown below. This
tablesu gives the rules for congtructing any desired column. Thus to generate a
column of the type indiceted by columns 1 through m+l the following steps
are necessary:

{8} Rows 1 through o sre obtsined by evelusting the indicated pertisl

derlvatives at the desired grid point.

{(b) Row O is obtained by evaluating Ci as defined above at the desired

grid point and chenging its sign.

(¢) Row n+l is O for i=1 ... m and 1 for i=m+l.

ol1 .. i | m m+l Al syl st o8,
* ¢ ]
oil o -C} -Cra1 Ml 0 0
RN g /
b 0 6xl bxl ol o ~1 .
. . . . . . 0
. . . . . . . )
I -g*
nl]l O / ax / ax | 9| 0© -1
n
n+1)| 1 o} 1 110 0 0

TABLEAU FOR CONVEX PROGRAMMING

R




The Algorithm

Either the original or the duaml linear problems foimulated above can
theoretically be solved by the simplex metaod but it i3 clear thet for even
moderately large problems and reasonable grid specing the number of restrictions
iz the primal (or number of variables in t':e dual} would be so large as to

exceed the capacity of most computers.

In this section a computational procedure is developed which solves the
provlem by a simplex-like algorithm which requires the formation of only a small

number of the tangent planeg described above,
Since the algorithm is an iterative process, it is only necessary to describe
how to get started, how to proceed froam one step to the next and vhen to stop.

This will now be done using the standard terminology and notetios from the

simplex method.

At eny iteration, say the xth, a bagis melrix call it Bk congisting of

a + 2 columns from the tableau is required, or more precisely ila inverse Bk'l
is required. To get started we have the initial basis matrix B0 given in

partitioned form by

-

0 -M
0 |
2

The inverse of Bo is eagily obtained by changing the sign oa M.

-1

— ™
o (o] |l
o

Assume now that stage k of the iteration has been reached and Bh'l is

available. Denote the elements of Bk°l by »id, ij =0, ... n 4 1. Recell that

- 0
the first row of Bk 1 is the current pricing vector end that bo = ] hence the

1

+
current pricing vector is (1, bo s oo bOn l).

Now assuming for the moment

that all columns in the tableau have been formed, the simplex method renires the
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computation of the idner product of the pricing vector with & column of the

tableau to see if this column is eligible to come into the basia. Looking first

at columns of the type i = 1 ... m this computation yields the net price

-

n 3t
-c: + 3 b°"-—-—ax1J
d=1 h R Y

for a typical tangent plane at x*. If this net price is > O this vector is

eligible to come into the basis. Since it is inconceivable to have all such

vectors availeble for inepection the following question is raised:

Are there any eligible tangent planes representing the 1th restriction

and if so can the one with maximum net price be identified and constructed?

Lcoking at the above net price as a functiion of the unknown grid point and

&
recailing the definitiong of Ci ve see that the net price for any tergent plene

to fi(x) is given by

n B 4
NP(x®%) = 3—51-] (x93 - x$) + £, (x*)
I=1 3 dye

Thus the net price is Just the tangent plane formed from grid point x* eveluated

st ¥y = v%). Now among al1 grid points, this crdinate is maximm for x4 = p%4

and the magnitude of the net price is fi(bod). Thus amcng 21l the vectors which

can be formed from fi(x), the one with maximum net price is formed by allowing

the grid point to have coordinates xJ = boJ and further, this maximum net price

is given by evaluating f, at this grid point. Thus if fi(bod) is negative there

are currently no columns in the 1th set which can come in and enother set must

be ipnspected.

Simiiarly, if the pricing vector is applied to the (m + 1) et set of

restrictions the net price is

- C * - g L bOJ + bo n+l
m+ 1l a1 ?x
3 3 se
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which upon rearrangement cean be written as

n
NP(x#) = b0 1 _ ( by 555 (bo‘1 - xg) + s(X*))
J=1 x*

which is just p0 B | (the ordinate at Xy = % to the tengent plane formed

fram grid point xg). Again this net price is maximum for xj = p and the

maximum net price 1s given by p0 B+l _ g(b).

4
¥

- Thus in suwamary, the pricing operation consists simply of evaluating the

functions fi(x), i=l ... m and x

A N
.:‘."!ﬁ):-m_"'. AL

0 !
. " g(x) at Xy = b J, J=1 ... n+l. If eny }

i
of these is positive then the carresponding vector can be brought in. In i

pPructice the one corresponding to the largest net price might be selected. The

vector is then formed, up-dated snd brought into the basis according to the

usual simplex procedure to get B;il and the process is repeated. The steps

8re repeated until ell net prices are £ 0, or more ressomnably, until no net

price is > e vhere e is some small positive number.

According to the dusl thecrem of linear programming the pricing vector for
the terminel B~%

matrix gives the optimum solution. That is, xj = bOJ and
C n+l

g(x) =1

Cbservations

The sequence of pricing vectors generated as described ebove is, in fact, a

sequence of trial solutions which converge on the true solution from outside the

feagible region.

0 e 4 A Eal

Each trial solution is at the intersection of the n+l

tangent planes which are currently in the basis.

The choice of value of M requires scme knowledge of the problem although

the previous paragreph shows that if M is too small this will be indicated by

0 n+}

the fact that b = M at termination. There is theoretically nothing

wrong with choosing M too large.
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Some problems have been encountered in vhich scme of the hypotheses nuve

not been satisfied in certain regions.

For example, v xl is concave for

xy > 0 but not real-valued for X < 0. Thus if the pricing vector at some
stage has bm < 0 then the pricing operstion can not be performed. However, in

this case, the restrictioa x; > 0. that is vector 5, in the tebleau would be
eligidble to come in and if brought in, will remove the difficulty.

In genersl, if sil sssumptions are not satisfied it may be possible to
apply the algorithm tut cere should be taken.
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PART II: Documeniation of ihe Pro-re.:
I. Descriptiecn of the Problem
As indicated in Part I. the problem to be solved is: o

maximize g(x) ’

subject to fi(x) <0, i=1, ..0,m,

-,\

where g(x) is concave and the fi(x) are convex, resl vslued functions of the
n-vector x for ell real x, and the functions are differentisble. Note that
description es s minimization problem is elso efforded, since minimizing -g(x) is
equivalent to maximizing g(x).
For simplicity of programeing we assume that the constrairts fi are segmented .
into four categories in the following order:
lower bound constraints denoted by Xy > Li’ i=1 ..., NLB
upper bound constraints denoted by Xy < u;, i=1, ..., NUB 5

other linear constraints dencted by Dx <b, D is (NLIN) x (NVAR)

other convex constraints denoted bty h, €0, i=1, ..., NCOK .

} Letting the functionsl be denoted by hNCON + 1’ the problem can be described

4 as

f maximize BcoR + 1(x)
) subject to

s. -xi+LifO, 1i=1, ..., \LB (1)

= x = U €0, {=1, .., NB (2)

Dx - b <0, where D is (N LIN x N VAR) (3)
and b is (NLIN x 1)
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hy(x) €0, 1=1, ..., NOK

II. Description of the Program

CONVEX is a subprogram written in FORTRAN IV (G) which executes the
computational procedure ccnsisting cf simplex~like iterations

|

with specisl pricing operédtions. The user is required to write -a maiz progrem

snd function subprogram which, together, specify tue particuiar problem CONVEX
is to solve, snd call CORVEX.

The main program will have evailsble ‘o CONVEX »n array consisting of the

lower and upper dbounds snd the left side of (3). This informstion on upper-end

A K0 AL R e AT ALY PR M 0 S NN VL NI S U PR AT BTN s LA (ot e -

e

lower bounds will be provided through the single dimensioned arrsys ILB, BLB, .
IUB, BUB, where

o

SRS

ILB gives th» subscripts of the variables having lower bounds

BLB gives the lower bound for the II.Bt’h varisble
IUB

0 6l M VIA TR S WA, 4RI e

glves the subscripts of the variables hsving upper bounds’

BUB gives the upper bound for the IUBT'!:1 variasble,

§
For exsmple, consider & sevenvarisble problem having upper and lower bounda E
as follows: !
T : : < < - <0 i
» Ly 2%3 20, 3ty
x. €U or, is proper input form -x, + L, <0 f:z
: 5-"5 ? g 6" 5= 2
. 3
. < - < X3
N L6 =% X3 U3 <0 ,{;
' x5 = Ug <0 ;

This informstion mey be provided by haviag
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ILB(1) = 3
ILB(2) = 6
BLB(1) = Ly
BLB(2) = L,
UB(1) = 3
ws(z) = 5
BUB(1) = -U,
BUB(2) = ~Us

The other linesr constraints are entered as

MI, 3) =D ! -],

where A{u%-) < 0 represents constraints ag in (3). Values of the following
varisbles should also be supplied:

NALTER:

number of varisbles,

totsl numoer of constraints plus one.
nunber of lower bound constreints.
number of upper bound constraints.
number of cther linear constrsints.
number of non-lizesr constraints.

upper bound on objective function.

smount by which BIGM is increased if the original estimete of
3IGM 1is toc smsll.

If NALTEx = O, alternste net pricing is employed. Otherwise,

alternste net pricing is employed except that prioritr restriction:

8re checked each iterstion, If NALTER = 1, "prierity" mesrs

lower bounds., If NALTER = 2, "priority” means lcwer and ugger

2 R ol IR s i IR Lt 18
'ﬂﬁ ,“Mar‘n:w;.:%m.%t&..:&vmw i [
el
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EPS1:

EPS2:

NEPS2:

BINV:

DELTAX:

IIBAS:

-1k

bounds. If MALTER = 3, "priority" means lower and upper bounds
and other linear constreints. If RALTER = Lk, "priority" means
&1l constreinis.
represents the stopping criterion associated with the net pricing
operation, i.e., the program D8y stop if the maximum net price
is less than EPS 1.
represents the stopping criterion associeted with the sum of the
absolute valne of changes in the values of the unknowns from
KVAR t t+k
iteration tto iteraticat+k, i.e., & Ix{ - x| < Eps2.
represents k in the description of i;i stopping criterion
8sscciated with EPS2, end must be less than or equal to 15.
represents pivet check stopping criterion, i.e., the progrsam
may stop if maximum element in entering vector is less than
EFSPIV.
iastructs program concerning which basis to expect,
end must be 0, 1, 2, or 3. For IBAS = 0, the initisl basis inverse
is BINV, supplied by the user. For IBAS = 1, the lower bound
constraints are autamatically used. For IBAS = 2, the upper
hound constraints sre sutomstically used. For IBAS = 3, the
co-ordinates of sn initial feasible poiat are supplied in X,
used only if TBAS = 0, in which case BIM contains the inverse
of the initisl basis and hes dimension (NVAR + 1) x (NVAR + 1),
used only if IBAS = O or IBAS = 3, in which case X contains the
current solution vector but has dimension NVAR.
used only if IBAS = 3, in which cese it is the amount by which

8ny artificial bound is incremented if it eppears in 8 terminal

solution,
used only if IBAS = 0, in which case the user must supply in INBAS(]

+h
the index of the constraint represented in the I™ column of BINV.
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instructs program 88 to hcow meny itersitions to perform before

re-inverting.
ITFRNT: tells program how meny iterations ere to be performed before
intermediste results sre printed.
JHIN:

If JBIN = 0, B™L is included in the information printed out.

Otherwise, it ie excluded.

In eddition, the main program must include the following three statements:

CIMENSION BINV(60, 60), X(60), INBAS(60)

COiMON/BLX 1/A(60, 60), BLB(60), B-B(60), TLB{60}, IUB(60)
COMMON/BLK 2/NVAR, NLB, NUB, NLIN, NCON, NET *

A function subprogram of the form SETUF(I, J, X, C) is required to provide

h‘i’ i= lp ceny NCON + l, ands'%-hi, i= 1, eesy NCON + l; J = 1, NVAR. For

specified I, SETUP will provide hi(x) !x* wher J = 0, and

3
= 240 e
J =1, «.., NVAR when J = 1.

III. An Exeample

Consider the following problem:

Meximize 2X1 - Xi + Xé

subject to -.7xl + Xé <1

2
2Xl + 3x§ <6
0 <X, £ 1.3

X >0

-—

*For the double-precision versicn, these srra

ys should be dimensicned 30, or
30 x 30, except for A, which should he 30 x 30.

S8 ot LY, e AR RN G et e
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In the formst of Section I, the problem mey be described as

Moxinize 2%, - X2+ x,
subject to X, +0%0
--x2 +0<0
XQ ~1.2<0
T+ X, =150
L] L ) .
2)’.§+3€-6§O
The input information described in Section 3 is &8s followa:
A=('07, l, 'l)
2 2
hl(x) =2, + X, -6

"2(")=2"1‘x§‘x2
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The main program may appear as follows:

DIMENSION BINV(G0, 60), X(69), INBAS(60)
coMoN/sLX 1/a(60,60), BLB{6C), BUB{60), ILB{6O), TUB(60)
COMMON/BLK 2/NVAR, MLB, NUB, NLIN, NCON, NET
NVAR = 2

NET = 6

NLB =2

RUB = 1

NLIN = 1

NCON = 1

BIGM = &,

DELTAM = 1.

NALTER = O

EPS1 = .00l

EPFS2 = .001

]

EPSPIV = .0001

INVERT

g

R S A

e s e
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KEPS2 = 10

TEAS = 1

ITERNT = 1 '

JBIN = 0 ’

me(1) = 1

mB(2) = 2

BLB(1) = O, 1

= BLB(2) = O,
TUB(1) = 2
BUB(L) = -1.3 :

A(l, 1) = =7

A1, 2) = 1.

A(l, 3) = -1,

CALL CONVEX (IBAS, BINV, X, INRAS, NALTER, EPS1, EPS2, NEPFS2, EPSPIV,
$INVERT, ITPRNT, JBIN, BIGM, DELTAM, DELTAX)

STOP

LNE T e tipe o R I TY AT
RO N SR R

END

SETUP may appear as followa:

FUNCTION SETUP (I, J, X, COL)

§ DIMERSION X(60), COL(60)
5 SETUP = O.

IF (J. EQ. 0) 6o TO (100, 200), I
IF (J. ). 1) 60 TO (300, 40O), I
100  SETUP = 2,%X(1)%#2 + 3,#x(2)#2 - 6.
RETURN
200 SETUP = 2.#%(1) - X(1)»*2 + x(2)
RETURN




o s - e
5

300 COL(1) = 4. * X(1) :

coL(2) = 6. #x(2)

RETURN
400 COL(1) = 2. - 2. #xX/1)

c0B(2) = 1 -

RETURN

END

The program car then be assembhled as,

REFERENCE

{1] Hertley, H. 0., and R. R. Hocking, "Cenvex Prcgramming by Tapgectial
Approxization,” Manegenment Sciemss, Vol. 9, Bo. L, 1963.
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List of Users of CONVEX

Mr. Harry Jones

Department of Civil Engineering
Texas A&M University

College Station, Texas 7743

Dr. Reymond Farrish
Deperiment of Ag. Economics
University of Connecticut
Storrs. Connecticut 06263
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Professor Dele Colyer
Department of Ag. Econouice
University of Missouri
Columbia, Missouri 65201

Dr. J. D. Pegranm

Depariment of Stetistics
Mississippi State University
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